Abstract

We propose a thermal model of the subducting Ionian microplate. The slab sinks in an isothermal mantle, and for the boundary conditions we take into account the relation between the maximum depth of seismicity and the “thermal parameter” Lth of the slab, which is a product of the age of the subducted lithosphere and the vertical component of the convergence rate. The surface heat-flux dataset of the Ionian Sea is reviewed, and a convective geotherm is calculated in its undeformed part for a surface heat flux of 42 mW m−2, an adiabatic gradient of 0.6 mK m−1, a mantle kinematic viscosity of 1017 m2 s−1 and an asthenosphere potential temperature of 1300°C. The calculated temperature-depth distribution compared to the mantle melting temperature indicates the decoupling limit between lithosphere and asthenosphere occurs at a depth of 105 km and a temperature of 1260°C. A 70–km thick mechanical boundary layer is found. By considering that the maximum depth of the seismic events within the slab is 600 km, a Lth of 4725 km is inferred. For a subduction rate equal to the spreading rate, the corresponding assimilation and cooling times of the microplate are about 7 and 90 Myr, respectively. The thermal model assumes that the mantle flow above the slab is parallel and equal to the subducting plate velocity of 6 cm yr−1, and ignores the heat conduction down the slab dip. The critical temperature, above which the subduced lithosphere cannot sustain the stress necessary to produce seismicity, is determined from the thermal conditions governing the rheology of the plate. The minimum potential temperature at the depth of the deepest earthquake in the slab is 730°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.