Abstract

Abstract: The use of polymeric materials has grown widely in various sectors such as packaging, building, electronic, automotive, and aerospace industries. Particularly, Ultra-High Molecular Weight Polyethylene has wide engineering applications and is used in large quantities in automotive oil pans, gears, slides, cams, bearings, fluid reservoirs, and the sports industry. Friction Stir Welding (FSW) is a solid-state process in joining thermoplastic materials. In this investigation, FSW process must be applied to join a UHMWPE plate of 8 mm thickness with specially designed hexagonal tool pin profile. The aim of this study is to examine the effect of main friction stir welding (FSW) parameters on the quality of UHMWPE plate welds. FSW machine, using a tool with a stationary shoulder and no external heating system. The welding parameters studied were the tool rotational speed which varied between 1300 and 1500 (rpm); the traverse speed which varied between 15 and 25 (mm/min), and the axial force ranging from 8 to 10 (KN). Good quality welds are achieved without using external heating, when the tool rotational speed and axial force are above a certain threshold. For high rotational speed and axial force welds have poor material mixing at the retreating side and mild voids at the nugget, tensile strength also obtained very poor. The hardness angle distortion and bead geometry also evaluated. Taguchi design optimum parameters and ANNOVA were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.