Abstract

Differential thermal calorimetry (DSC) analysis of partially dehydrated bovine bone, demineralized bone and bovine tendon collagen was performed up to 300 °C to determine factors influencing stability of mineralized collagen in bone tissue. Two endothermal regions were recognized. The first, attributed to denaturation of collagen triple helix, was hydration dependent and had a peak at 155–165 °C in bone, 118–137 °C in tendon and 131–136 °C in demineralized bone. The second region extended from 245 to 290 °C in bone and from 200 to 280 °C in tendon and was connected with melting and decomposition of collagen. Differences in thermodynamic parameters between cortical and trabecular bone tissue were stated. Activation energy of collagen unfolding in native bone tissue increased with dehydration of the bone. From the results of the present study we conclude that dehydrated bone collagen is thermally very stable both in native and in demineralized bone. Presence of mineral additionally stabilizes bone tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.