Abstract

The thermal stability of top and bottom IrMn exchange-biased spin-valve films prepared by ion beam deposition (IBD) and magnetron sputtering physical vapor deposition (PVD) is compared. These films exhibit identical temperature dependence for the exchange bias field Hex, with a blocking temperature of TB=250 °C, that is independent of preparation technique. Isothermal annealing at temperatures below TB led to a ln(t) dependent degradation in Hex, suggesting a thermal activation process. The high crystallographic quality of the IBD films leads to a superior stability compared to PVD films. Top spin-valve films are also found to be more stable than bottom spin-valve films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.