Abstract

The temperature Programmed Reduction method was applied to analyze the structural and thermal behavior of LiNixCoyMnzO2 (x = 0.5 and 0.8). All reduction phases of LiNi0.5Co0.2Mn0.3O2 powder were transitioned above 843 K. For LiNi0.8Co0.1Mn0.1O2 powder, three reduction steps are starting at 661 K. It contributes to the transition to Ni2+, Co2+, Ni0, and Co0 phases, respectively. It was consistent with the reduction mechanism of LiNiO2 and LiCoO2. In delithiated NCM523, only a structural change from H1 to M is observed, which does not significantly affect thermal stability. For delithiated NCM811, the TPR result was sharply reduced to 536 K in the H2-H3 structural transition. When charged to 4.4 V, it decomposes into a NiO-like phase at 507 K. The reducing phase was verified through X-ray diffraction after all decomposition steps of the TPR results. As a result, the TPR method can confirm the reduction mechanism and thermal stability of the cathode material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.