Abstract

A compact two-dimensional angle sensor with a measurement resolution that exhibits superior sensitivity has been designed based on the autocollimator principle to enable the precision measurement field to measure the pitch and yaw error motions of a moving object. The signal drift of this sensor affects the measured angle and is mainly caused by the change in environmental temperature. To improve the thermal stability of the sensor, computer simulation has been conducted using the finite element analysis software ANSYS 16. Simulation results show that the angle sensor is considerably stable to adopt mechanisms with a symmetrical structure. Thus, a modified optimal angle sensor is developed, and its thermal stability has been verified via contrast experiments. Compared with the original sensor, the average drift of the optimized angle sensor is reduced from 0.430 arcsec∕°C to 0.120 arcsec∕°C when the variation of the environmental temperature is 5 °C. The optimal angle sensor is ideal for high-precision measuring equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.