Abstract
The behaviour of two Nicalon/calcium aluminosilicate ceramic composite laminates (a (±45°)3s and a plain-weave woven) under conditions of thermal shock has been studied. Test specimens heated at various temperatures were quenched into room-temperature water. This was followed by detailed damage characterisation. In addition, post-shock mechanical properties were assessed by tensile tests (for the woven laminate) and flexural tests (for both laminates). Both materials were found to have comparable thermal shock resistance. Crack morphologies comprised matrix cracks of various orientations that exhibited similar characteristics to those described for thermally shocked cross-ply laminates with the same constituents, but cracking was found to be less widespread in the woven laminate. Fibre breaks were also detected on the woven material when high-temperature degradation of the fibre–matrix interface was present. A gradual reduction in properties (stiffness, proportional limit stress, fracture strength) of thermally shocked specimens was identified, which began at larger shocks than those at which thermal shock damage initiated. This was attributed to the extension of some matrix cracks into the bulk of material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.