Abstract
There are many innovative applications of thermal properties of soil and backfill, such as geothermal cooling and heating systems, backfilling of high-voltage cable, etc., being developed. Therefore, there is a need to develop a better understanding of the thermal behavior of soil and backfill. The thermal resistivity and moisture migration behavior of a number of soils including those frequently used for high-voltage cable backfill have been studied in laboratory-scale and field-scale experiments, so as to evaluate their suitability as a backfill material. Thermal resistivity of small soil specimens was measured in the laboratory using a probe. Moreover, compaction mold thermal moisture migration tests were carried out for larger specimens in the laboratory. A full-scale field test was performed by means of a simulated cable installation. The results indicate in general that well-graded granular materials have the most desirable thermal behavior, and poorly graded soils (especially granular and coarse soils) have the least desirable thermal behavior, in terms of thermal resistivity and moisture migration driven by a thermal gradient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.