Abstract

Heat exchanges in a sealed ampoule in the LTVG (low temperature vapour growth) furnace have been modelled in order to compute temperature fields and control the growth of HgI 2 crystals from vapour phase at low temperatures. We use a coupled conductive-radiative model to determine the shapes of the source and the crystal at different equilibrium states (i.e. without growth rate). The model involves conductivity anisotropy in the crystal and radiative exchanges between grey and diffuse surfaces (source and crystal interfaces, Pyrex walls), which are considered as opaque. Internal buoyancy effect is not taken into account as the pressure inside the ampoule is very small. The source temperature is fixed. For different undercoolings, i.e. for different cold finger temperatures, the “equilibrium” isotherm between the source/gas and crystal/gas interface has been numerically obtained. This “equilibrium” isotherm, which is associated with the stop of the growing process, gives a crystal shape. This shape is compared with experimental results given by the ETH-Zürich group. The model would permit a better understanding and control of the future HgI 2 crystal growth experiment. The computations are performed using a finite element package (FIDAP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.