Abstract

The nanocomposites of polyamide 6 (PA6)/poly(methyl methacrylate) (PMMA)/non-functionalized and functionalized [carboxylic acid (COOH) and hydroxyl (OH)] single wall carbon nanotubes (SWCNTs) were prepared in mass ratios of 79.5/19.5/1, 49.5/49.5/1, and 19.5/79.5/1 by melt–mixing method at 230 °C. The PA6/PMMA blends with mass ratios of 80/20, 50/50, and 20/80 served as references. The Fourier transform infrared analyses of nanocomposites showed the formation of hydrogen bond interactions among PA6, PMMA, and OH and COOH functional groups of SWCNTs. The nanocomposites and blends had higher thermal stability with respect to the PMMA. The differential scanning calorimeter (DSC) curves showed that the nanocomposites and blends exhibited two Tg values at around 51 and 126 °C for PA6 and PMMA, respectively. About 20 °C early crystallization was observed in nanocomposites compared to the blends. The dynamic mechanical analysis (DMA) results suggested that among all the compositions of blends and nanocomposites, storage modulus (E′) was higher for PMMA-rich blends and nanocomposites. At 25 °C, the E′ values were higher for blends and nanocomposites compared to the neat PA6. The tan δ curves indicated that the more heterogeneity of the hybrid nature resulted in PA6/PMMA/SWCNTs-OH or SWCNTs-COOH with 79.5/19.5/1 mass ratio nanocomposites compared to the PA6/PMMA with 80/20 mass ratio blend. The higher Tg values of PA6 and PMMA were observed in DMA studies compared to the DSC studies for PA6 and PMMA as neat and in blends and nanocomposites. The significant improvements in crystallization of nanocomposites were considered resulting from achieving better compatibility among the polymer components and carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.