Abstract

The clownfish Amphiprion ocellaris is widely distributed in the coral reef ecosystems of tropical and subtropical regions of the West Indo Pacific, an area that hosts economically valuable species, and, thus, a suitable candidate for warm water aquaculture. This study determined the preferred temperature, critical threshold limits, represented by critical thermal maximum and critical thermal minimum, thermal window width, and aerobic metabolic scope of A. ocellaris clownfish acclimated to 20, 23, 26, 29, 32, and 35 °C. A positive response (P < 0.05) occurred when the preferred temperature significantly increased with increasing acclimation temperature. The preferred temperature obtained graphically was 30.0 °C. Acclimation temperature significantly affected the thermal tolerance which increased with acclimation temperature. The thermal window calculated for A. ocellaris was 301.5 °C2. The thermal metabolic scope obtained in animals acclimated at the interval from 23 to 32 °C (P > 0.05) had a mean value of 4240.8 mg O2 h−1 kg−1 w.w., revealing that A. ocellaris is a eurythermal species with a range of optimal physiological performance that closely matches the environmental conditions where it can be farmed. Therefore, the highest value of the thermal aerobic scopes corresponded to the intervals of the preferred temperature obtained for A. ocellaris. These results may partially explain their worldwide distribution pattern, as well as their aquaculture potential in tropical regions.

Highlights

  • Temperature is one of the most important factors for aquatic ectotherms

  • This study aimed at determining the preferred temperature, thermal tolerance, and thermal window width, and comparing the thermal metabolic scope (TMS) with the aerobic scope (AS) obtained by temperature-induced metabolic rate (TIMR) and chasing methods in juveniles of A. ocellaris, acclimated at different temperatures to optimize their culture conditions

  • This study proposed that the weight-specific oxygen consumption upon stimulation of the organisms’ activity caused high metabolic rates (HMR) when exposed to 95% of the critical thermal maximum (CTMax) (TIMRMax)

Read more

Summary

Introduction

Temperature is one of the most important factors for aquatic ectotherms. In most fish, body temperature is controlled by environmental temperature, so some organisms have developed thermoregulatory mechanisms to survive and optimize temperature-dependent physiological processes (Reynolds 1979; Goyer et al 2014). The coral reef ecosystems where these fish live have experienced episodes of high temperatures in the last years (Nilsson et al 2009; Harborne 2013; Madeira et al 2016, 2017) In this context, knowing the thermal tolerance of clownfish should be a key aspect when restocking coral programs start operating in an attempt to replenish the ecosystem structure. For these reasons, the effort of restocking natural populations has been considered in the last few years by breeding them artificially to obtain mass production (Jung 2006; Ajith Kumar and Balasubramanian 2009; Abduh et al 2011)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.