Abstract

Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) dissipate high power densities which generate hotspots and cause thermomechanical problems. Here, we propose and simulate GaN-based HEMT technologies that can remove power densities exceeding 30 kW/cm2 at relatively low mass flow rate and pressure drop. Thermal performance of the microcooler module is investigated by modeling both single- and two-phase flow conditions. A reduced-order modeling approach, based on an extensive literature review, is used to predict the appropriate range of heat transfer coefficients associated with the flow regimes for the flow conditions. Finite element simulations are performed to investigate the temperature distribution from GaN to parallel microchannels of the microcooler. Single- and two-phase conjugate computational fluid dynamics (CFD) simulations provide a lower bound of the total flow resistance in the microcooler as well as overall thermal resistance from GaN HEMT to working fluid. A parametric study is performed to optimize the thermal performance of the microcooler. The modeling results provide detailed flow conditions for the microcooler in order to investigate the required range of heat transfer coefficients for removal of heat fluxes up to 30 kW/cm2 and a junction temperature maintained below 250 °C. The detailed modeling results include local temperature and velocity fields in the microcooler module, which can help in identifying the approximate locations of the maximum velocity and recirculation regions that are susceptible to dryout conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.