Abstract

A thermal model based on the polynomial relationship of ns and EF is presented. The effect of temperature rise due to self-heating is studied on various parameters viz. polarization, electron mobility, velocity saturation, low-field mobility and thermal conductivity of substrate. Parasitic resistances and channel length modulation were also taken into consideration. The relationship between self-heating effect and device parameters was studied. The model is based on closed-form expressions and does not require elaborate computation. After including self-heating effect in calculations of current–voltage characteristics, our results agreed well with published experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.