Abstract

A pulsed, two-beam, thermal lensing experiment was performed to determine the concentration of aqueous solutes above the critical point of water. Despite a very significant mirage effect due to thermal gradients in the cell and absorption by water itself, the thermal lensing signal strength for aqueous benzoic acid in supercritical water was found to be linear with concentration in the sub-millimolar range. Although thermal lensing experiments in aqueous media are notoriously insensitive, the sharp density gradient near the critical point considerably improves the signal intensity. In this study a short-pulse pump 266 nm YAG laser and continuous low-power probe Ar ion beam were both focused into a supercritical water cell, giving a lensing signal whose strength could be maximized by changing the overlap of the two beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.