Abstract

Using an SU(2) invariant finite-temperature tensor network algorithm, we provide strong numerical evidence in favor of an Ising transition in the collinear phase of the spin-1/2 J_{1}-J_{2} Heisenberg model on the square lattice. In units of J_{2}, the critical temperature reaches a maximal value of T_{c}/J_{2}≃0.18 around J_{2}/J_{1}≃1.0. It is strongly suppressed upon approaching the zero-temperature boundary of the collinear phase J_{2}/J_{1}≃0.6, and it vanishes as 1/log(J_{2}/J_{1}) in the large J_{2}/J_{1} limit, as predicted by Chandra etal., [Phys. Rev. Lett. 64, 88 (1990)PRLTAO0031-900710.1103/PhysRevLett.64.88]. Enforcing the SU(2) symmetry is crucial to avoid the artifact of finite-temperature SU(2) symmetry breaking of U(1) algorithms, opening new perspectives in the investigation of the thermal properties of quantum Heisenberg antiferromagnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.