Abstract
The correlation between the mechanical property and the thermotropic transition of the phospholipid bilayer has been recently demonstrated (Chem. Phys. Lipids 110 (2001) 27). However, the role of thermal induced mechanical responses of phospholipid bilayer on the contact mechanics of liposome adhering on a cationic substrate has not been determined. In this study, confocal-reflectance interference contrast microscopy, phase contrast microscopy and contact mechanics modeling are applied to probe the adhesion mechanisms of liposomes in the presence of electrostatic interactions during the thermotropic transition of the lipid bilayer. When temperature increases from 23 to 49 °C at pH 7.4, the degree of liposome deformation ( a/ R) and adhesion energy of dipalmitoyl-sn-glycero-3-phosphocholine liposome increases by 10% and remains constant, respectively, on 3-amino-propyl-triethoxy-silane (APTES) modified substrate. The extents of increase in these two parameters are highly dependent on the physicochemical properties of the rigid substrate. At pH 4, the adhesion energies above and below the phase transition temperature ( T m) are increased by one order of magnitude due to the formation of the free silanol groups on APTES substrate. In hypotonic condition, the degree of vesicle deformation remains constant and the adhesion energy reduces by 20% during sample heating. Under all conditions, the adhesion energy of the adhering liposome spans a few orders of magnitude against the increase of liposome size as the surface area to volume ratio is maximized in smallest vesicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.