Abstract
BackgroundInfrared thermal image scanners (ITIS) appear an attractive option for the mass screening of travellers for influenza, but there are no published data on their performance in airports.MethodsITIS was used to measure cutaneous temperature in 1275 airline travellers who had agreed to tympanic temperature measurement and respiratory sampling. The prediction by ITIS of tympanic temperature (37.8°C and 37.5°C) and of influenza infection was assessed using Receiver Operating Characteristic (ROC) curves and estimated sensitivity, specificity and positive predictive value (PPV).FindingsUsing front of face ITIS for prediction of tympanic temperature ≥37.8°C, the area under the ROC curve was 0.86 (95%CI 0.75–0.97) and setting sensitivity at 86% gave specificity of 71%. The PPV in this population of travellers, of whom 0.5% were febrile using this definition, was 1.5%. We identified influenza virus infection in 30 travellers (3 Type A and 27 Type B). For ITIS prediction of influenza infection the area under the ROC curve was 0.66 (0.56–0.75), a sensitivity of 87% gave specificity of 39%, and PPV of 2.8%. None of the 30 influenza-positive travellers had tympanic temperature ≥37.8°C at screening (95%CI 0% to 12%); three had no influenza symptoms.ConclusionITIS performed moderately well in detecting fever but in this study, during a seasonal epidemic of predominantly influenza type B, the proportion of influenza-infected travellers who were febrile was low and ITIS were not much better than chance at identifying travellers likely to be influenza-infected. Although febrile illness is more common in influenza A infections than influenza B infections, many influenza A infections are afebrile. Our findings therefore suggest that ITIS is unlikely to be effective for entry screening of travellers to detect influenza infection with the intention of preventing entry of the virus into a country.
Highlights
Febrile illness is more common in influenza A infections than influenza B infections, many influenza A infections are afebrile
Rising concerns regarding Influenza A (H5N1) and the pandemic of Influenza A (H1N1) 2009 have led to the use of infrared thermal image scanners (ITIS) at some borders for the mass screening of travellers to detect those who might be infected with influenza [1]
Infrared thermal image scanners (ITIS) measure body surface temperature, not body core temperature, and so ITIS temperature measurements are subject to the influence of a range of human and environmental factors
Summary
Rising concerns regarding Influenza A (H5N1) and the pandemic of Influenza A (H1N1) 2009 have led to the use of infrared thermal image scanners (ITIS) at some borders for the mass screening of travellers to detect those who might be infected with influenza [1]. ITIS measure body surface temperature rapidly, non-invasively, and with no contact, minimising the risk of contagion. Evaluations of the use of ITIS in clinical settings have been conducted, and have reported sensitivities of 15% to 90% for confirmed fever depending on the cut-off used to define fever [3,4,5,6]. These findings may not be applicable to border screening. Infrared thermal image scanners (ITIS) appear an attractive option for the mass screening of travellers for influenza, but there are no published data on their performance in airports
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.