Abstract

The manufacture of polymer coatings via the cold-spray process remains challenging owing to the viscoelastic-viscoplastic behavior exhibited by polymers. One crucial step to improve cold-spray polymer coating is to determine the particles’ thermal history during their flight from inside the nozzle to their impact on the substrate. In this study, we propose estimating the velocity and temperature of an isolated polymer particle traveling through a nozzle with a sharp change in its cross-section. The preliminary results show that the geometric discontinuity constricts the flow, thereby increasing the particle velocity. Moreover, a significant thermal gradient is expected inside the particle, which in turn leads to a gradient of mechanical properties of the polymeric particle during impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.