Abstract

AbstractInduction heating of disk shaped specimens was used to compare and contrast the thermal fatigue behavior of MoSi2 and MoSi2-based composites. Specimens were subjected to 5 s heating and cooling cycles between temperature limits of 700°C and 1200°C. The monolithic material and a MoSi2- 10 vol% TiC composite exhibited poor thermal shock resistance and could not be thermally cycled according to this temperature-time profile. A 30 vol% TiC composite exhibited much better thermal shock and thermal fatigue resistance as compared to the monolithic material, but exhibited undesirable oxidation. MoSi2-10 and 30 vol% SiC particulate composites exhibited excellent thermal shock and thermal fatigue resistance compared to that of the monolithic material. A MoSi2-10 vol% SiC whisker composite did not show improved thermal fatigue resistance due to the initial processing defects present in the material. The monolithic material and the 10 vol% TiC composite were also subjected to 30 s heating and cooling cycles between temperature limits of 700°C and 1200°C. Both of these materials exhibited better thermal fatigue resistance at this temperature-time profile, but the 10 vol% TiC composite also exhibited undesirable oxidation. The fatigue results are discussed with reference to the initial microstructure of the specimens and the stress-strain history of the specimens which was obtained by a thermoelastic finite element analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.