Abstract

We study transient thermal processes in infinite harmonic crystals with complex (polyatomic) lattice. Initially particles have zero displacements and random velocities such that distribution of temperature is spatially uniform. Initial kinetic and potential energies are different and therefore the system is far from thermal equilibrium. Time evolution of kinetic temperatures, corresponding to different degrees of freedom of the unit cell, is investigated. It is shown that the temperatures oscillate in time and tend to generally different equilibrium values. The oscillations are caused by two physical processes: equilibration of kinetic and potential energies and redistribution of temperature among degrees of freedom of the unit cell. An exact formula describing these oscillations is obtained. At large times, a crystal approaches thermal equilibrium, i.e. a state in which the temperatures are constant in time. A relation between equilibrium values of the temperatures and initial conditions is derived. This relation is refereed to as the non-equipartition theorem. For illustration, transient thermal processes in a diatomic chain and graphene lattice are considered. Analytical results are supported by numerical solution of lattice dynamics equations. ${\bf Keywords}$: thermal equilibrium; stationary state; approach to equilibrium; polyatomic lattice; complex lattice; kinetic temperature; harmonic crystal; transient processes; equipartition theorem; temperature matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.