Abstract

The increasing fuel prices have led researchers to work on the efficiency and development of heat-transferring devices. One such device is the hot water radiator, which is familiar in the domestic arena. The study aims to increase the efficiency and cooling performance of hot water 3D radiators by modifying the design of their fins and adding perforations for better fluid mixing. CFD simulations were carried out on the radiators with modified fin geometries (Wavy, Spike-rib, Cut-sections, Straight) and with two different intensities of perforation (19 and 38 perforations) for each case at varying inlet flowrates of the radiator. The numerical model in this study was validated with experimental work. The hydrothermal performance of each radiator was measured in terms of fin surface temperature, entropy generation, heat transfer rate, and thermal enhancement factor. The temperature distributions and fluid flow streamlines have also been shown. The results show that modifying the fin geometries augments the overall heat transfer rate by up to 131 % while perforating the fins boosts the rate to 134 %. Moreover, the radiation heat transfer is seen to have surpassed the convection heat transfer by 60–160 % for the modified radiator cases. Finally, the most efficient radiator is found based on the thermal enhancement factor, which is the spike-fin arrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.