Abstract

The static thermo-viscoelastic responses of fiber-reinforced composite plates are investigated by the use of a refined shear deformation theory. In this theory, trigonometric terms are used for the displacements in addition to the initial terms of a power series through the thickness. The form of the assumed displacements of this theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transverse shear correction factors are needed because a correct representation of the transverse shear strain is given. Using the method of effective moduli solves the equations governing the bending of simply supported fiber-reinforced viscoelastic composite plates. An exact closed-form solution is presented for plates subjected to nonuniform distributions of temperature. The validity of the present theory is demonstrated by comparison with solutions available in the literature. A wide variety of results are presented for the bending response of viscoelastic rectangular plates under thermal loads. The influences of plate aspect ratio, side-to-thickness ratio, thermal expansion coefficients ratio and constitutive and volume fraction parameters on the thermally induced response are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.