Abstract

The aim of this work was to investigate the response of rainbow trout embryos (Oncorhynchus mykiss) (i.e., survival, size at hatching, time to hatching, malformations) to four incubation temperatures (5.8, 8.9, 14.0 and 16.8°C), taking into account the origin of the male parental genome and comparing pure farmed and F1 embryos (farmed female × wild thermal-resistant male). Several consequences of thermal stress were observed: lower accumulated thermal units (ATU) at hatching at high temperatures, and lower survival, shorter hatched free embryos and less-consumed yolk sac at extreme temperatures. The effect of the thermal-adapted male parental genome was shown only in the lower percentage of incompletely hatched free embryos in the F1 families. It appears that to obtain greater modification of thermal performance during early development, the adapted genome of the wild thermal-resistant population has to be included through maternal inheritance, thus producing a stabilized strain selected for domesticity, growth and thermal adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.