Abstract
The thermal diffusivity of Au, Sn, Mo, and Al0.97Ti0.03 alloy thin films, which are commonly used in microelectromechanical (MEMs) system applications, is measured by two independent methods — the ac calorimetric and photothermal mirage methods. Both methods yield similar results of the thin-film thermal conductivity, but the uncertainty of the mirage technique is found to be relatively large because of the large temperature increase during the measurement. The measured thermal diffusivities of the thin films are generally lower than those of the same bulk material. Especially, the Al0.97Ti0.03 thin film shows a pronounced thermal conductivity drop compared with bulk Al, which is believed to be mainly due to impurity scattering. Comparison of the thermal conductivity with the electrical conductivity measured by the standard four-probe technique indicates that the relation of thermal and electrical conductivities follows the Wiedemann–Franz law for the case of Au and Sn thin films. However, the Lorentz number is significantly larger than the theoretical prediction for the case of Al0.97Ti0.03 and Mo thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.