Abstract
A modification of a technique for the measurement of the thermal diffusivity of thin solid materials is presented. The technique is called Thermal Diffusivity by Laser Intensity Modulation Method (LIMM-TD). It is based on the measurement of the phase retardation of a thermal wave passing through the test material by means of a lead-zirconate-titanate ceramic (PZT) pyroelectric detector. It is not necessary to know either the pyroelectric coefficient of the detector or the intensity of the laser beam. The method was tested on quartz samples to verify its accuracy. It was then applied to the study of several sets of ceramic samples with porosities of 20, 25, and 30%. One sample set was poled and the pores were partially filled with the fluid used during poling. A second set was not poled. The poled porous samples had thermal conductivities intermediate between that of a commercial dense sample and those of unpoled materials. Thermal diffusivities and conductivities were also measured on micron-thickness porous silica samples. The experimental results were compared with calculations using several composite mixing theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.