Abstract

III-N VCSELs undergo severe self-heating which limits the output optical power. This makes thermal management a critical design consideration. The three most common VCSEL structures (hybrid VCSELs, flip-chip VCSELs and ELOG VCSELs) have been studied using advanced self-consistent electro-opto-thermal numerical simulations. The key geometric and material parameters affecting the thermal resistance of these devices have been identified. Our simulations suggest that some of the proposed solutions and design modifications can increase the maximum optical output power by as much 100%. This manuscript also describes the correct method of using numerical simulation in device design—to predict trends and isolate the key factors affecting device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.