Abstract

The thermal decomposition of CaCO 3 was studied under high vacuum by means of both TG and the more recently developed constant decomposition rate thermal analysis (CRTA) which allows the monitoring of both reaction rate and the residual pressure over the sample. The reliability of the kinetic results seems to be much higher with the latter technique which actually allows the reduction of the reaction rate and therefore the heat and mass transfer effects over a broad range of sample size. For instance, it was necessary, by conventional TG started under a vacuum of 2 10 −6 torr with a heating rate of 0.5 K min −1, to lower the amount of sample to 2 mg in order to obtain the same activation energy as that calculated from CRTA with various samples weighing up to 50 mg. The TG experimental conditions quoted above (and which are upper limits of mass and heating rate) are beyond the limit of sensitivity of most available conventional TG equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.