Abstract

The thermal decomposition pathways leading to the formation of volatile compounds and to char residue in poly(bisphenol A carbonate) (PC), poly(resorcinol carbonate) (PRC), and poly(hydroquinone carbonate) (PHC) have been investigated by mass spectrometry. The structure of the volatile compounds obtained in the temperature range 300−700 °C, by direct pyrolysis mass spectrometry (DPMS), suggests that these polycarbonates undergo thermal decomposition by a number of different pyrolysis processes. In the initial stage of the thermal degradation are generated cyclic oligomers by an intramolecular exchange reaction, whereas the evolution of CO2 and H2O is spread over all the pyrolysis temperature range, being responsible for the formation of ether bridges (decarboxylation) and phenolic end groups (hydrolysis). A disproportionation reaction of the BPA isopropylidene bridges of PC itself takes place at higher temperature yielding phenyl and isopropylidene end groups, whereas pyrolysis products containing dibenzo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.