Abstract

Temperature-dependent thermal conductivity in the range between 7 and 300 K was measured for CH3NH3PbI3 and CsPbI3 and compared to a Debye model via the Callaway method. Thermal conductivity was found to be extremely low across the whole temperature range for both materials, with CH3NH3PbI3 lower than CsPbI3. Fitting analysis showed that a resonant phonon scattering term can account for the difference in thermal transport behavior between the perovskite with a methylammonium (MA) ion versus a single cesium atom in the cationic A site of the lattice. The resonant frequency associated with this term is in the range of ∼15–30 cm–1, pointing to the rotational degree of freedom of the organic ion. Analysis of the temperature dependence of the possible phonon scattering mechanisms showed that thermal conductivity of both CH3NH3PbI3 and CsPbI3 perovskites was dominated by Umklapp scattering at room temperature, and the rotation of the organic cation may be responsible for suppressing the thermal conductivity of ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.