Abstract

We report a thermal characterization method for a large-scale free-standing chemical vapor deposited few layer graphene (FLG), in which a micropipette temperature sensor with an inbuilt laser point heating source was used. The technique is unique as it exhibits in general the characteristic features of high accuracy measurement of thermal conductivity of free-standing ultrathin films. Using the micropipette sensor we successfully implemented the characterization technique to show high thermal transport behavior in free-standing graphene. For accurate and successful measurement of thermal conductivity, FLG grown on Ni was transferred to a polycarbonate (PC) membrane with holes (average diameter of 100 μm) in order to isolate the graphene film from heat spreading through the bottom of the film by the laser point heating. The thermal conductivity of FLG by this method was measured at 2868 ± 932 W/m °C. The large uncertainty of 32% in thermal conductivity measurement is mainly due to the non-uniform (∼30% deviation) thickness of the film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.