Abstract

Carbonaceous porous matrices were prepared from a tannin-based resin by physical foaming, having improved thermal properties by addition of various kinds and various amounts of graphite fillers. The resultant composite carbon foams presented much higher thermal conductivity, making them suitable for hosting phase-change materials with the aim of using them in seasonal storage applications. These materials were investigated in terms of porous structure, thermal and mechanical properties. It was shown that, unlike what was a priori expected, smaller particles were far more suitable for getting conductive, strong and porous matrices. The smaller were the particles, the better were the results. These findings were explained and justified, making such biomass-based composite carbon foams interesting and cheap candidates for thermal storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.