Abstract
Abstract. In Morocco, the prevalent use of building materials with low thermal resistance has translated into substantial energy consumption. This has underscored the pressing need to promote the development and adoption of sustainable construction and insulation materials. The primary objective of our study is to enhance the thermal properties of plaster by incorporating date palm fibers (DPF) to create an exterior wall coating. To evaluate the thermal properties of the resulting Gypsum-DPF bio-composite material, we conducted several experimental measurements of thermophysical properties. These measurements encompassed the determination of bulk density and thermal conductivity, which were assessed using the steady-state hot plate method. Our findings reveal that the inclusion of date palm fiber in the material led to a noteworthy reduction in bulk density, amounting to approximately 17.16%. Furthermore, thermal conductivity decreased by approximately 26.24%. These outcomes underscore the potential and value of utilizing this bio-composite material in building construction to enhance thermal comfort and, critically, contribute to a reduction in greenhouse gas emissions, particularly CO2 emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.