Abstract

We consider the Allen-Cahn equation in a well-known scaling regime which gives motion by mean curvature. A well-known transformation of this PDE, using its standing wave, yields a PDE the solution of which is approximately the distance function to an interface moving by mean curvature. We give bounds on this last fact in terms of thermal capacity. Our techniques hinge upon the analysis of a certain semimartingale associated with a certain PDE (the PDE for the approximate distance function) and an analogue of some results by Bañuelos and Øksendal relating lifetimes of diffusions to exterior capacities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.