Abstract

This work presents an analytical approach to investigate the mechanical and thermal buckling of functionally graded material truncated conical shells resting on Pasternak elastic foundations, subjected to thermal load and axial compressive load. The shells are reinforced by closely spaced stringers and rings. The change in spacing between the stringers in the meridional direction is also taken into account. Two cases on uniform temperature rise and linear temperature distribution through the thickness of the shell are considered. Using the first-order shear deformation theory, Lekhnitskii smeared stiffener technique and the adjacent equilibrium criterion, the linearization stability equations are established. An approximate solution satisfies simply supported boundary conditions, and the Galerkin method is applied to obtain a closed-form expression for determining the critical compression buckling load and thermal buckling load in cases of uniform temperature rise and linear temperature distribution across the shell thickness. The effects of temperature, foundation, stiffeners, material properties, dimensional parameters and semi-vertex angle on the buckling behaviors of shell are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.