Abstract
The purpose of this study was to examine the changes in cold block of unmyelinated C fibers in the tibial nerve by preconditioning with heating and to develop a safe method for thermal block of C-fiber conduction. In seven cats under α-chloralose anesthesia, C-fiber-evoked potentials elicited by electrical stimulation were recorded on the tibial nerve during block of axonal conduction induced by exposing a small segment (9 mm) of the nerve to cooling (from 35°C to ≤5°C) or heating (45°C). Before heating, partial, reproducible, and reversible cold block was first detected at a threshold cold block temperature of 15°C and complete cold block occurred at a temperature of ≤5°C. After the nerve was heated at 45°C for 5-35 min, the threshold cold block temperature significantly (P < 0.05) increased from 15°C to 25°C and the complete cold block temperature significantly (P < 0.05) increased from ≤5°C to 15°C on average. The increased cold block temperatures persisted for the duration of the experiments (30-100 min) while the amplitude of the C-fiber-evoked potential measured at 35°C recovered significantly (P < 0.05) to ~80% of control. This study discovered a novel thermal method to block mammalian C fibers at an elevated temperature (15-25°C), providing the opportunity to develop a thermal nerve block technology to suppress chronic pain of peripheral origin. The interaction between heating and cooling effects on C-fiber conduction indicates a possible interaction between different temperature-sensitive channels known to be present in the mammalian C fibers.NEW & NOTEWORTHY Our study discovered that the temperature range for producing a partial to complete cold block of mammalian C-fiber axons can be increased from 5-15°C to 15-25°C on average after a preheating at 45°C. This discovery raises many basic scientific questions about the influence of temperature on nerve conduction and block. It also raises the possibility of developing a novel implantable nerve block device to treat many chronic diseases including chronic pain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.