Abstract

Almost all practical engineering applications are multi-physics in nature, and various physical phenomena usually interact and couple with each other. For instance, the resistivity of most conducting metals increases linearly with increases in the surrounding temperature resulting from Joule heating by electrical currents flowing through conductors. Therefore, in order to accurately characterize the performance of high-power integrated circuits (ICs), packages and printed circuit boards (PCBs), it is essential to account for both electrical and thermal effects and the intimate couplings between them. In this paper, we present non-conformal, non-overlapping domain decomposition methods (DDMs) for thermal-aware direct current (DC) IR drop co-analysis of high-power chip-package-PCBs. Here, IR stands for the finite resistivity (R) of metals and current (I) drawn off from the power/ground planes. The proposed DDM starts by partitioning the composite device into inhomogeneous sub-regions with temperature-dependent material properties. Subsequently, each sub-domain is meshed independently according to its own characteristic features. As a consequence, the troublesome mesh-generation task for complex ICs can be greatly subdued. The proposed thermal-aware DC IR drop co-analysis applies the non-conformal DDM for both conduction and steady-state heat-transfer analyses with a two-way coupling between them. Numerical examples, including an IC package and a chip-package-PCB, demonstrate the flexibility and potential of the proposed thermal-aware DC IR-drop co-analysis using non-conformal DDMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.