Abstract

In the present study, the Ni50Mn50−xInx (x = 12, 13 and 14 at.%) shape memory alloys were obtained by rapid solidification. The martensitic transformation and the solidification structures of these alloys were carried out by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, respectively. The experimental results showed that the crystalline structure of martensite in the In12 and In13 ribbons was identified as a 10M monoclinic structure, although the austenite has a cubic L21 structure for the In14 alloy. The martensitic transformation start temperature Ms decreases progressively with the increasing In content. The Ni content is mainly responsible for the adjustment in martensite transformation behavior in these shape memory alloys. Finally, the control of the valence electron by atom (e/a) determines the practical properties of these alloys at room temperature and makes it possible to create the alloys that can be candidates for various uses, such as sensors, refrigerants for magnetic refrigeration and actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.