Abstract

The search for alternative energy sources encompasses increasing the capacity of renewable energy, while reducing the amount of carbon dioxide emissions. The nontoxic and biodegradable character of biomass justifies its exploitation as a fuel to generate power. Specifically, Sapindus saponaria L. oil, with its high lipid content, thermal stability, suitable saponification values, and acid and iodine content, seems to be a promising source for the production of biocombustibles. In this work, biodiesel was produced from the methyl esterification of fatty acids from S. saponaria L. oil. In addition, blends were prepared from the mixture of petrodiesel and biofuel in proportions of 5, 10, 15, 20, and 25% (v/v). The biodiesel and its blends were evaluated for their rheological properties, thermal profile (thermogravimetric and differential scanning calorimetric analyses), density, and refractive index. The biodiesel presented a Newtonian behavior and a kinematic viscosity value of 5.029mm2/s at 40°C, in accordance with the ASTM D6751, EN 14214, and CNS 15072 standards. The slight increase in the biodiesel’s viscosity, compared to that of petrodiesel (3.442mm2/s), is advantageous because it provides an increased lubricity and reduces engine wear. Blends B5 to B25 also presented kinematic viscosity values in accordance with the ASTM D976, ASTM D7467, EN 590, and CNS 1471 standards. The obtained biodiesel (Tonset=188.14°C) showed a superior thermal stability to petrodiesel (Tonset=102.17°C). Differential scanning calorimetry revealed the phase transition between the liquid state to the crystallization of fuels at low temperatures. The compilation of these results highlights the potential of S. saponaria L. oil to generate a biofuel suitable for future commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.