Abstract

La2Ce2O7 (LC) is a new promising thermal barrier coating (TBC) material for high-temperature applications. However, the sudden decrease of thermal expansion coefficient (TEC) at ∼623 K limits its application. In this study, the plasma-sprayed La2Ce1.7Ta0.3O7.15 (LCT) coating was developed by partial substitution of Ce4+ in LC with Ta5+. LCT coating shows lower thermal conductivity between 298 K and 1273 K (0.54–0.71 W/(m·K)) than LC coating (0.65–0.85 W/(m·K)) and the traditional yttria partially stabilized zirconia (YSZ) coating (1.53–1.72 W/(m·K)). It also exhibits excellent thermal stability at least up to 1573 K for 1000 h. What is more, the sudden TEC drop is suppressed owing to the reduced oxygen vacancy concentration governed by Ta5+-substitution content. As a result, LCT TBC shows an improved thermal cycling lifetime in an air furnace as compared to LC TBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.