Abstract
The syntheses of 2,6-bis(4-chloropyrazol-1-yl)pyridine (L1), 2,6-bis(4-bromopyrazol-1-yl)pyridine (L2) and 2,6-bis(4-iodopyrazol-1-yl)pyridine (L3) by electrophilic halogenation of 2,6-bis(pyrazol-1-yl)pyridine are reported. The complex [Fe(L1)2][BF4]2 crystallises in two different solvent-free polymorphs. The tetragonal (alpha) form crystallises in a known version of the "terpyridine embrace" structure, and undergoes an abrupt spin-transition at 202 K. The orthorhombic (beta) form exhibits a modified form of the same packing motif, containing two unique iron sites in a 2 : 1 ratio. One-third of the complex molecules in that material undergo a very gradual thermal spin-crossover centred at 137 K. Comparison of the two structures implies that spin-crossover cooperativity in the alpha-polymorph is transmitted in two dimensions within the extended lattice. [Fe(L2)2][BF4]2 is isostructural with alpha-[Fe(L1)2][BF4]2 and exhibits a similarly abrupt spin-transition at 253 K. In contrast, [Fe(L3)2][BF4]2 is low-spin as a powder at 360 K and below and can be crystallised as two different solvates from acetone solution. All three compounds exhibit the LIESST effect at 10 K, with photoconversions of 40-100%. Their LIESST relaxation temperatures obey the empirical T(LIESST) = T0- 0.3T(1/2) (T0 = 150 K) law that we have previously proposed for this class of compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.