Abstract

Abstract Recent studies of thermal roughening on Si surfaces and kinetic roughening of some growing films, copper and tungsten, by using scanning tunneling microscopy and atomic force microscopy are reviewed. A logarithmic divergence of the surface height fluctuations of Si(111) vicinal surfaces is confirmed, in agreement with the theoretical prediction of rough surface in thermal equilibrium. For the kinetically formed rough surfaces, power law dependences of the interface width on the system size are clearly observed. Furthermore, the tungsten films show a short-range scaling regime and a long-range “smooth” regime. The roughness exponents α are compared with theoretical predictions: for the typical Cu electrode position condition (α=1/2), the exponent appears to be close to that found for local growth models, and for tungsten films (0.7∼0.8), it is consistent with recent predictions for growth where surface diffusion is predominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.