Abstract
The thermal decomposition kinetics of UO2C2O4 3H2O were studied by TG method in a flowing nitrogen, air, and oxygen atmospheres. It is found that UO2C2O4 3H2O decomposes to uranium oxides in four stages in all atmosphere. The first two stages are the same in the whole atmosphere that correspond to dehydration reactions. The last two stages correspond to decomposition reactions. Final decomposition products are determined with X-Ray powder diffraction method. Decomposition mechanisms are different in nitrogen atmosphere from air and oxygen atmosphere. The activation energies of all reactions were calculated by model-free (KAS and FWO) methods. For investigation of reaction models, 13 kinetic model equations were tested and correct models, giving the highest linear regression, lowest standard deviation, and agreement of activation energy value to those obtained from KAS and FWO equations were found. The optimized value of activation energy and Arrhenius factor were calculated with the best model equation. Using these values, thermodynamic functions (DH, DS, and DG) were calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.