Abstract
The first ever implementation of a thermal AND gate, which performs logic calculations with phonons, is presented using two identical thermal diodes composed of asymmetric graphene nanoribbons (GNRs). Employing molecular dynamics simulations, the characteristics of this AND gate are investigated and compared with those for an electrical AND gate. The thermal gate mechanism originates through thermal rectification due to asymmetric phonon boundary scattering in the two diodes, which is only effective at the nanoscale and at the temperatures much below the room temperature. Due to the high phonon velocity in graphene, the gate has a fast switching time of ≈100 ps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.