Abstract
We consider sequences of the form $\left(a_{n} \alpha\right)_{n}$ mod 1, where $\alpha\in\left[0,1\right]$ and where $\left(a_{n}\right)_{n}$ is a strictly increasing sequence of positive integers. If the asymptotic distribution of the pair correlations of this sequence follows the Poissonian model for almost all $\alpha$ in the sense of Lebesgue measure, we say that $(a_n)_n$ has the metric pair correlation property. Recent research has revealed a connection between the metric theory of pair correlations of such sequences, and the additive energy of truncations of $(a_n)_{n}$. Bloom, Chow, Gafni and Walker speculated that there might be a convergence/divergence criterion which fully characterises the metric pair correlation property in terms of the additive energy, similar to Khintchine's criterion in the metric theory of Diophantine approximation. In the present paper we give a negative answer to such speculations, by showing that such a criterion does not exist. To this end, we construct a sequence $(a_n)_n$ having large additive energy which, however, maintains the metric pair correlation property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.