Abstract

BackgroundSevere peripheral nerve injury significantly affects patients’ quality of life and induces neuropathic pain. Neural crest stem cells (NCSCs) exhibit several attractive characteristics for cell-based therapies following peripheral nerve injury. Here, we investigate the therapeutic effect of NCSC therapy and associated changes in the spinal cord in a sciatic nerve transection (SNT) model.MethodsComplex sciatic nerve gap injuries in rats were repaired with cell-free and cell-laden nerve scaffolds for 12 weeks (scaffold and NCSC groups, respectively). Catwalk gait analysis was used to assess the motor function recovery. The mechanical withdrawal threshold and thermal withdrawal latency were used to assess the development of neuropathic pain. Activation of glial cells was examined by immunofluorescence analyses. Spinal levels of extracellular signal-regulated kinase (ERK), NF-κB P65, brain-derived neurotrophic factor (BDNF), growth-associated protein (GAP)-43, calcitonin gene-related peptide (CGRP), and inflammation factors were calculated by western blot analysis.ResultsCatwalk gait analysis showed that animals in the NCSC group exhibited a higher stand index and Max intensity At (%) relative to those that received the cell-free scaffold (scaffold group) (p < 0.05). The mechanical and thermal allodynia in the medial-plantar surface of the ipsilateral hind paw were significantly relieved in the NCSC group. Sunitinib (SNT)-induced upregulation of glial fibrillary acidic protein (GFAP) (astrocyte) and ionized calcium-binding adaptor molecule 1 (Iba-1) (microglia) in the ipsilateral L4–5 dorsal and ventral horn relative to the contralateral side. Immunofluorescence analyses revealed decreased astrocyte and microglia activation. Activation of ERK and NF-κB signals and expression of transient receptor potential vanilloid 1 (TRPV1) expression were downregulated.ConclusionNCSC-laden nerve scaffolds mitigated SNT-induced neuropathic pain and improved motor function recovery after sciatic nerve repair. NCSCs also protected the spinal cord from SNT-induced glial activation and central sensitization.

Highlights

  • Severe peripheral nerve injury significantly affects patients’ quality of life and induces neuropathic pain

  • sciatic nerve transection (SNT)-induced pain was significantly relieved in the neural crest stem cells (NCSC) group (0.69 ± 0.02 for Mechanical withdrawal threshold (MWT); 0.75 ± 0.02 for Thermal withdrawal latency (TWL)) when compared with the scaffold group (0.59 ± 0.02 for MWT; 0.64 ± 0.02 for TWL, both p < 0.05, Fig. 2b and c)

  • Inhibition of glial activation SNT induced upregulation of the area percentage and the averaged intensity of glial fibrillary acidic protein (GFAP) and ionized calciumbinding adaptor molecule 1 (Iba-1) staining in the ipsilateral L4–5 dorsal and ventral horn compared with the contralateral side (Figs. 3 and 4, all p < 0.05)

Read more

Summary

Objectives

Our objective was to investigate the therapeutic effect of scaffold-based NCSC transplantation to the sciatic nerve after SNT on the spinal cord

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.