Abstract
Stem cell paracrine factors are beneficial in myocardial infarction (MI) treatment. However, specific stem cell factor effects on myocardial cytokines and their molecular pathways have not been precisely identified. We treated 44 rats with MIs with intramyocardial Isolyte or 4 × 106 human umbilical cord blood mononuclear cells (hUCBC) without immune suppression. We measured infarct sizes and myocardial cytokines. We then stressed isolated myocytes with H2O2 to simulate MIs in the absence and presence of paracrine factors from hypoxic hUCBC. We measured myocyte Akt protein kinase, which causes survival, and JNK and p38 protein kinases, which cause myocyte death. In Isolyte treated MIs, TNF-α increased from 6.1% to 51.3%, MCP increased from 5.6% to 39.8%, MIP increased from 8.1% to 25.9%, and IL-1 increased from 7.1% to 20.0%. In hUCBC treated MIs, inflammatory cytokines did not change and there was no hUCBC rejection. MI sizes averaged 30% in Isolyte treated rats and 10% in hUCBC treated rats (p 60% (all p 100% (all p < 0.01 vs. myocytes with H2O2) The Akt inhibitor API prevented hUCBC paracrine factor effects on myocytes. Addition of the JNK inhibitor SP600125 or p38 inhibitor SB203580 to myocytes with H2O2 plus hUCBC factors increased myocyte viability. We conclude that hUCBC secrete growth factors and anti-inflammatory cytokines that increase myocyte Akt activation and myocyte survival and decrease myocyte JNK, p38 and myocyte death in MIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.