Abstract

We describe new extensions of the first-order theorem prover Vampire for supporting program analysis and proving properties of loops with arrays. The common theme of our work is the symbol elimination method for generating loop invariants. In our work, we improve symbol elimination for program analysis in two ways. First, we enhance the program analysis framework of Vampire by simplifying skolemization during consequence finding. Second, we extend symbol elimination with theory-specific reasoning, in particular in the theory of polymorphic arrays, and generate and prove program properties over arrays. We illustrate our approach on a number of challenging examples coming from program analysis and verification. Our experiments show that, thanks to our improvements, programs that could not be analyzed before can now be verified with our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.