Abstract

An efficient approach to control isomerization reactions by ultrashort infrared laser pulses in the presence of a thermal environment is developed and demonstrated by means of model simulations within the reduced density matrix formalism beyond a Markov-type approximation for a picosecond Cope rearrangement of 2,6-dicyanoethyl-methylsemibullvalene coupled to a quasi-resonant environment. The population transfer from the reactant state via the delocalized transition state to the product state is accomplished by two picosecond infrared laser pulses with a probability up to 80% despite the rather strong coupling to the environment, which reduces the lifetime of the transition state into the femtosecond time domain. Simulations, carried out for helium (4 K), nitrogen (77.2 K) and room (300 K) temperatures, show that low temperatures are preferable for state-selective laser control of isomerization reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.