Abstract

We analyze the waveguiding properties of a semiconductor slab waveguide amplifier in which the gain (i.e., the permittivity) in the quantum well (QW) is taken to be anisotropic. Losses may be present simultaneously in the cladding layers. Using scattering theory, a rigorous integral equation is derived. Our model incorporates the two main causes of polarization sensitivity of the amplification, viz. 1) waveguiding and 2) the anisotropic light-matter interaction in the QW. It is determined how much anisotropy is needed in the QW to get a polarization-insensitive amplification. Also, reflection coefficients and TE/TM mixing are studied. A comparison between the exact results and the Born approximation is made. A Green's tensor for a layered structure with losses is derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.