Abstract

In this paper the theory of plastic mechanism control is presented for moment resisting frame–concentrically braced frames dual systems, i.e. for structural systems combined by moment resisting frames and concentrically braced frames. It is aimed at the design of structures failing in global mode, i.e. whose collapse mechanism is characterised by the yielding of all the tensile diagonals and the occurrence of buckling in the compressed ones, and by plastic hinge formation at all the beam ends and at the base of first storey columns. The proposed methodology is based on the application of the kinematic theorem of plastic collapse, by imposing that the global mechanism equilibrium curve has to lie below all the other equilibrium curves corresponding to undesired mechanisms. The practical application of the design methodology is illustrated by means of a worked example. In addition, the results of a non-linear static pushover and dynamic analyses of the designed structure are also discussed in order to demonstrate the effectiveness of the proposed design procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.